Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2400752121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648484

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare disease caused by the expression of progerin, a mutant protein that accelerates aging and precipitates death. Given that atherosclerosis complications are the main cause of death in progeria, here, we investigated whether progerin-induced atherosclerosis is prevented in HGPSrev-Cdh5-CreERT2 and HGPSrev-SM22α-Cre mice with progerin suppression in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), respectively. HGPSrev-Cdh5-CreERT2 mice were undistinguishable from HGPSrev mice with ubiquitous progerin expression, in contrast with the ameliorated progeroid phenotype of HGPSrev-SM22α-Cre mice. To study atherosclerosis, we generated atheroprone mouse models by overexpressing a PCSK9 gain-of-function mutant. While HGPSrev-Cdh5-CreERT2 and HGPSrev mice developed a similar level of excessive atherosclerosis, plaque development in HGPSrev-SM22α-Cre mice was reduced to wild-type levels. Our studies demonstrate that progerin suppression in VSMCs, but not in ECs, prevents exacerbated atherosclerosis in progeroid mice.

2.
Clín. investig. arterioscler. (Ed. impr.) ; 35(1): 42-51, Ene-Feb. 2023. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-215765

RESUMO

Vascular smooth muscle cells (VSMCs) constitute the principal cellular component of the medial layer of arteries and are responsible for vessel contraction and relaxation in response to blood flow. Alterations in VSMCs can hinder vascular system function, leading to vascular stiffness, calcification and atherosclerosis, which in turn may result in life-threatening complications. Pathological changes in VSMCs typically correlate with chronological age; however, there are certain conditions and diseases, such as Hutchinson-Gilford progeria syndrome (HGPS), that can accelerate this process, resulting in premature vascular aging. HGPS is a rare genetic disorder characterized by severe VSMC loss, accelerated atherosclerosis and death from myocardial infarction or stroke during the adolescence. Because experiments with mouse models have demonstrated that alterations in VSMCs are responsible for early atherosclerosis in HGPS, studies on this disease can provide insights into the mechanisms of vascular aging and assess the relative contribution of VSMCs to this process.(AU)


Las células del músculo liso vascular (CMLV) constituyen el principal componente celular de la capa medial arterial, siendo responsables de la contracción y relajación de los vasos en respuesta al flujo sanguíneo. Las alteraciones en CMLV dificultan la función vascular, generan rigidez vascular, calcificación y aterosclerosis, pudiendo resultar en complicaciones mortales. Cambios patológicos en CMLV suelen correlacionarse con la edad cronológica; sin embargo, existen afecciones y enfermedades, como el síndrome de progeria de Hutchinson-Gilford (HGPS), que pueden acelerar este proceso, provocando envejecimiento vascular prematuro. El HGPS es un trastorno genético raro caracterizado por una pérdida grave de CMLV, aterosclerosis acelerada y muerte por infarto de miocardio o ictus durante la adolescencia. Experimentos con modelos de ratón demostraron que las alteraciones en CMLV son responsables de la aterosclerosis temprana en HGPS. Por tanto, estudios sobre esta enfermedad pueden proporcionar información sobre los mecanismos del envejecimiento vascular y caracterizar la contribución de las CMLV.(AU)


Assuntos
Humanos , Envelhecimento , Aterosclerose , Doenças Cardiovasculares , Músculo Liso Vascular , Progéria , Arteriosclerose , Saúde do Idoso
3.
Clin Investig Arterioscler ; 35(1): 42-51, 2023.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35125249

RESUMO

Vascular smooth muscle cells (VSMCs) constitute the principal cellular component of the medial layer of arteries and are responsible for vessel contraction and relaxation in response to blood flow. Alterations in VSMCs can hinder vascular system function, leading to vascular stiffness, calcification and atherosclerosis, which in turn may result in life-threatening complications. Pathological changes in VSMCs typically correlate with chronological age; however, there are certain conditions and diseases, such as Hutchinson-Gilford progeria syndrome (HGPS), that can accelerate this process, resulting in premature vascular aging. HGPS is a rare genetic disorder characterized by severe VSMC loss, accelerated atherosclerosis and death from myocardial infarction or stroke during the adolescence. Because experiments with mouse models have demonstrated that alterations in VSMCs are responsible for early atherosclerosis in HGPS, studies on this disease can provide insights into the mechanisms of vascular aging and assess the relative contribution of VSMCs to this process.


Assuntos
Aterosclerose , Progéria , Animais , Camundongos , Músculo Liso Vascular , Envelhecimento , Aterosclerose/etiologia , Senescência Celular
4.
Methods Mol Biol ; 2419: 611-627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237992

RESUMO

Aging is associated with alterations in the arterial wall that promote vascular disease development and its clinical manifestations, including myocardial infarction, stroke, and arterial dissection. The arterial wall is comprised of three layers, intima, media and adventitia, each with distinct cellular composition and function, which can therefore contribute differently to vascular disease initiation and progression. Hence, studying transcriptomic alterations, either in the entire arterial wall or separately in the three arterial layers, can aid in disentangling the etiopathology of vascular disease and thus pave the way for innovative treatments. This chapter describes protocols for total RNA extraction from complete mouse aorta and separately from intima, media, and adventitia layers for subsequent transcriptomic analysis.


Assuntos
RNA , Transcriptoma , Túnica Adventícia , Animais , Aorta/patologia , Artérias , Camundongos
5.
Circulation ; 144(22): 1777-1794, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34694158

RESUMO

BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a rare disorder characterized by premature aging and death mainly because of myocardial infarction, stroke, or heart failure. The disease is provoked by progerin, a variant of lamin A expressed in most differentiated cells. Patients look healthy at birth, and symptoms typically emerge in the first or second year of life. Assessing the reversibility of progerin-induced damage and the relative contribution of specific cell types is critical to determining the potential benefits of late treatment and to developing new therapies. METHODS: We used CRISPR-Cas9 technology to generate LmnaHGPSrev/HGPSrev (HGPSrev) mice engineered to ubiquitously express progerin while lacking lamin A and allowing progerin suppression and lamin A restoration in a time- and cell type-specific manner on Cre recombinase activation. We characterized the phenotype of HGPSrev mice and crossed them with Cre transgenic lines to assess the effects of suppressing progerin and restoring lamin A ubiquitously at different disease stages as well as specifically in vascular smooth muscle cells and cardiomyocytes. RESULTS: Like patients with HGPS, HGPSrev mice appear healthy at birth and progressively develop HGPS symptoms, including failure to thrive, lipodystrophy, vascular smooth muscle cell loss, vascular fibrosis, electrocardiographic anomalies, and precocious death (median lifespan of 15 months versus 26 months in wild-type controls, P<0.0001). Ubiquitous progerin suppression and lamin A restoration significantly extended lifespan when induced in 6-month-old mildly symptomatic mice and even in severely ill animals aged 13 months, although the benefit was much more pronounced on early intervention (84.5% lifespan extension in mildly symptomatic mice, P<0.0001, and 6.7% in severely ill mice, P<0.01). It is remarkable that major vascular alterations were prevented and lifespan normalized in HGPSrev mice when progerin suppression and lamin A restoration were restricted to vascular smooth muscle cells and cardiomyocytes. CONCLUSIONS: HGPSrev mice constitute a new experimental model for advancing knowledge of HGPS. Our findings suggest that it is never too late to treat HGPS, although benefit is much more pronounced when progerin is targeted in mice with mild symptoms. Despite the broad expression pattern of progerin and its deleterious effects in many organs, restricting its suppression to vascular smooth muscle cells and cardiomyocytes is sufficient to prevent vascular disease and normalize lifespan.


Assuntos
Lamina Tipo A/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Progéria , Animais , Modelos Animais de Doenças , Humanos , Lamina Tipo A/genética , Camundongos , Camundongos Transgênicos , Progéria/genética , Progéria/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34465617

RESUMO

Genomic instability, the unresolved accumulation of DNA variants, is hypothesized as one of the contributors to the natural aging process. We assessed the frequency of unresolved DNA damage reaching the transcriptome of the murine myocardium during the course of natural aging and in hearts from four distinct mouse models of premature aging with established aging-related cardiac dysfunctions. RNA sequencing and variant calling based on total RNA sequencing was compared between hearts from naturally aging mice, mice with cardiomyocyte-specific deficiency of Ercc1, a component of the DNA repair machinery, mice with reduced mitochondrial antioxidant capacity, Tert-deficient mice with reduced telomere length, and a mouse model of human Hutchinson-Gilford progeria syndrome (HGPS). Our results demonstrate that no enrichment in variants is evident in the naturally aging murine hearts until 2 y of age from the HGPS mouse model or mice with reduced telomere lengths. In contrast, a dramatic accumulation of variants was evident in Ercc1 cardiomyocyte-specific knockout mice with deficient DNA repair machinery, in mice with reduced mitochondrial antioxidant capacity, and in the intestine, liver, and lung of naturally aging mice. Our data demonstrate that genomic instability does not evidently contribute to naturally aging of the mouse heart in contrast to other organs and support the contention that the endogenous DNA repair machinery is remarkably active to maintain genomic integrity in cardiac cells throughout life.


Assuntos
Senilidade Prematura/genética , Senescência Celular/genética , Instabilidade Genômica/genética , Envelhecimento/genética , Animais , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Endonucleases/genética , Endonucleases/metabolismo , Feminino , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Miocárdio/metabolismo
7.
Cells ; 9(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049978

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is among the most devastating of the laminopathies, rare genetic diseases caused by mutations in genes encoding nuclear lamina proteins. HGPS patients age prematurely and die in adolescence, typically of atherosclerosis-associated complications. The mechanisms of HGPS-related atherosclerosis are not fully understood due to the scarcity of patient-derived samples and the availability of only one atheroprone mouse model of the disease. Here, we generated a new atherosusceptible model of HGPS by crossing progeroid LmnaG609G/G609G mice, which carry a disease-causing mutation in the Lmna gene, with Ldlr-/- mice, a commonly used preclinical atherosclerosis model. Ldlr-/-LmnaG609G/G609G mice aged prematurely and had reduced body weight and survival. Compared with control mice, Ldlr-/-LmnaG609G/G609G mouse aortas showed a higher atherosclerosis burden and structural abnormalities typical of HGPS patients, including vascular smooth muscle cell depletion in the media, adventitial thickening, and elastin structure alterations. Atheromas of Ldlr-/-LmnaG609G/G609G mice had features of unstable plaques, including the presence of erythrocytes and iron deposits and reduced smooth muscle cell and collagen content. Ldlr-/-LmnaG609G/G609G mice faithfully recapitulate vascular features found in patients and thus provide a new tool for studying the mechanisms of HGPS-related atherosclerosis and for testing therapies.


Assuntos
Modelos Animais de Doenças , Músculo Liso Vascular/metabolismo , Progéria/metabolismo , Senilidade Prematura/metabolismo , Senilidade Prematura/fisiopatologia , Animais , Aorta/metabolismo , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Feminino , Lamina Tipo A/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Miócitos de Músculo Liso/metabolismo , Lâmina Nuclear/metabolismo , Placa Aterosclerótica/metabolismo , Progéria/fisiopatologia , Receptores de LDL/genética , Receptores de LDL/metabolismo
8.
J Am Coll Cardiol ; 75(8): 919-930, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130928

RESUMO

Aging is the main risk factor for vascular disease and ensuing cardiovascular and cerebrovascular events, the leading causes of death worldwide. In a progressively aging population, it is essential to develop early-life biomarkers that efficiently identify individuals who are at high risk of developing accelerated vascular damage, with the ultimate goal of improving primary prevention and reducing the health care and socioeconomic impact of age-related cardiovascular disease. Studies in experimental models and humans have identified 9 highly interconnected hallmark processes driving mammalian aging. However, strategies to extend health span and life span require understanding of interindividual differences in age-dependent functional decline, known as biological aging. This review summarizes the current knowledge on biological age biomarkers, factors influencing biological aging, and antiaging interventions, with a focus on vascular aspects of the aging process and its cardiovascular disease related manifestations.


Assuntos
Envelhecimento , Biomarcadores , Vasos Sanguíneos/fisiologia , Animais , Humanos
9.
EMBO Mol Med ; 11(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30862662

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by progerin, a mutant lamin A variant. HGPS patients display accelerated aging and die prematurely, typically from atherosclerosis complications. Recently, we demonstrated that progerin-driven vascular smooth muscle cell (VSMC) loss accelerates atherosclerosis leading to premature death in apolipoprotein E-deficient mice. However, the molecular mechanism underlying this process remains unknown. Using a transcriptomic approach, we identify here endoplasmic reticulum stress (ER) and the unfolded protein responses as drivers of VSMC death in two mouse models of HGPS exhibiting ubiquitous and VSMC-specific progerin expression. This stress pathway was also activated in HGPS patient-derived cells. Targeting ER stress response with a chemical chaperone delayed medial VSMC loss and inhibited atherosclerosis in both progeria models, and extended lifespan in the VSMC-specific model. Our results identify a mechanism underlying cardiovascular disease in HGPS that could be targeted in patients. Moreover, these findings may help to understand other vascular diseases associated with VSMC death, and provide insight into aging-dependent vascular damage related to accumulation of unprocessed toxic forms of lamin A.


Assuntos
Estresse do Retículo Endoplasmático , Lamina Tipo A/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Apoptose/efeitos dos fármacos , Aterosclerose/etiologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Estimativa de Kaplan-Meier , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Progéria/tratamento farmacológico , Progéria/mortalidade , Progéria/patologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico , Resposta a Proteínas não Dobradas/efeitos dos fármacos
10.
Nucleus ; 10(1): 28-34, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30900948

RESUMO

Lamin A, a product of the LMNA gene, is an essential nuclear envelope component in most differentiated cells. Mutations in LMNA have been linked to premature aging disorders, including Hutchinson-Gilford progeria syndrome (HGPS). HGPS is caused by progerin, an aberrant form of lamin A that leads to premature death, typically from the complications of atherosclerotic disease. A key characteristic of HGPS is a severe loss of vascular smooth muscle cells (VSMCs) in the arteries. Various mouse models of HGPS have been created, but few of them feature VSMC depletion and none develops atherosclerosis, the death-causing symptom of the disease in humans. We recently generated a mouse model that recapitulates most features of HGPS, including VSMC loss and accelerated atherosclerosis. Furthermore, by generating cell-type-specific HGPS mouse models, we have demonstrated a central role of VSMC loss in progerin-induced atherosclerosis and premature death.


Assuntos
Aterosclerose/metabolismo , Músculo Liso Vascular/metabolismo , Progéria/metabolismo , Animais , Aterosclerose/patologia , Humanos , Lamina Tipo A/metabolismo , Músculo Liso Vascular/patologia , Progéria/patologia
13.
Clín. investig. arterioscler. (Ed. impr.) ; 30(3): 120-132, mayo-jun. 2018. ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-175427

RESUMO

El envejecimiento es el principal factor de riesgo de enfermedad cardiovascular (ECV) y su prevalencia está aumentando progresivamente debido en gran parte al incremento de la esperanza de vida a nivel mundial. En este contexto, es fundamental establecer cuáles son los mecanismos por los que el envejecimiento promueve el desarrollo de ECV, con el objetivo de reducir su incidencia. La aterosclerosis y la insuficiencia cardiaca contribuyen de manera significativa a la morbimortalidad por ECV asociada a la edad. El síndrome de progeria de Hutchinson-Gilford (HGPS) se caracteriza por un envejecimiento prematuro que cursa también con ECV acelerada. Se trata de un trastorno genético raro causado por la expresión de progerina, una forma mutada de la prelamina A. La progerina induce aterosclerosis masiva y alteraciones electrofisiológicas en el corazón, promueve el envejecimiento y finalmente la muerte prematura a una edad media de 14,6 años, principalmente por infarto de miocardio o ictus cerebral. En esta revisión se discuten las principales alteraciones estructurales y funcionales que afectan al sistema vascular durante el envejecimiento fisiológico y prematuro, así como los mecanismos que subyacen a la aterosclerosis y al envejecimiento exagerados inducidos por la prelamina A y la progerina. Dado que ambas proteínas se expresan en individuos sin HGPS y muchas de las características del envejecimiento normal se presentan en la progeria, la investigación en el ámbito del HGPS podría contribuir a la identificación de nuevos mecanismos implicados en el envejecimiento cardiovascular fisiológico


Aging is the main risk factor for cardiovascular disease (CVD). The increased prevalence of CVD is partly due to the global increase in life expectancy. In this context, it is essential to identify the mechanisms by which aging induces CVD, with the ultimate aim of reducing its incidence. Both atherosclerosis and heart failure significantly contribute to age-associated CVD morbidity and mortality. Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by the synthesis of progerin, which is noted for accelerated aging and CVD. This mutant form of prelamin A induces generalised atherosclerosis, vascular calcification, and cardiac electrophysiological abnormalities, leading to premature aging and death, mainly due to myocardial infarction and stroke. This review discusses the main vascular structural and functional abnormalities during physiological and premature aging, as well as the mechanisms involved in the exacerbated CVD and accelerated aging induced by the accumulation of progerin and prelamin A. Both proteins are expressed in non-HGPS individuals, and physiological aging shares many features of progeria. Research into HGPS could therefore shed light on novel mechanisms involved in the physiological aging of the cardiovascular system


Assuntos
Humanos , Animais , Camundongos , Envelhecimento/fisiologia , Endotélio Vascular/fisiopatologia , Progéria/epidemiologia , Progéria/complicações , Progéria/fisiopatologia , Doenças Cardiovasculares , Aterosclerose/fisiopatologia , Calcificação Vascular/fisiopatologia , Lamina Tipo A/fisiologia , Proteínas Associadas à Matriz Nuclear , Hipertensão
14.
Clin Investig Arterioscler ; 30(3): 120-132, 2018.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29602596

RESUMO

Aging is the main risk factor for cardiovascular disease (CVD). The increased prevalence of CVD is partly due to the global increase in life expectancy. In this context, it is essential to identify the mechanisms by which aging induces CVD, with the ultimate aim of reducing its incidence. Both atherosclerosis and heart failure significantly contribute to age-associated CVD morbidity and mortality. Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder caused by the synthesis of progerin, which is noted for accelerated aging and CVD. This mutant form of prelamin A induces generalised atherosclerosis, vascular calcification, and cardiac electrophysiological abnormalities, leading to premature aging and death, mainly due to myocardial infarction and stroke. This review discusses the main vascular structural and functional abnormalities during physiological and premature aging, as well as the mechanisms involved in the exacerbated CVD and accelerated aging induced by the accumulation of progerin and prelamin A. Both proteins are expressed in non-HGPS individuals, and physiological aging shares many features of progeria. Research into HGPS could therefore shed light on novel mechanisms involved in the physiological aging of the cardiovascular system.


Assuntos
Envelhecimento/fisiologia , Doenças Cardiovasculares/fisiopatologia , Progéria/fisiopatologia , Fatores Etários , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Sistema Cardiovascular/fisiopatologia , Humanos , Lamina Tipo A/metabolismo , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/mortalidade , Progéria/genética , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade
15.
Circulation ; 138(3): 266-282, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29490993

RESUMO

BACKGROUND: Progerin, an aberrant protein that accumulates with age, causes the rare genetic disease Hutchinson-Gilford progeria syndrome (HGPS). Patients who have HGPS exhibit ubiquitous progerin expression, accelerated aging and atherosclerosis, and die in their early teens, mainly of myocardial infarction or stroke. The mechanisms underlying progerin-induced atherosclerosis remain unexplored, in part, because of the lack of appropriate animal models. METHODS: We generated an atherosclerosis-prone model of HGPS by crossing apolipoprotein E-deficient (Apoe-/-) mice with LmnaG609G/G609G mice ubiquitously expressing progerin. To induce progerin expression specifically in macrophages or vascular smooth muscle cells (VSMCs), we crossed Apoe-/-LmnaLCS/LCS mice with LysMCre and SM22αCre mice, respectively. Progerin expression was evaluated by polymerase chain reaction and immunofluorescence. Cardiovascular alterations were determined by immunofluorescence and histology in male mice fed normal chow or a high-fat diet. In vivo low-density lipoprotein retention was assessed by intravenous injection of fluorescently labeled human low-density lipoprotein. Cardiac electric defects were evaluated by electrocardiography. RESULTS: Apoe-/-LmnaG609G/G609G mice with ubiquitous progerin expression exhibited a premature aging phenotype that included failure to thrive and shortened survival. In addition, high-fat diet-fed Apoe-/-LmnaG609G/G609G mice developed a severe vascular pathology, including medial VSMC loss and lipid retention, adventitial fibrosis, and accelerated atherosclerosis, thus resembling most aspects of cardiovascular disease observed in patients with HGPS. The same vascular alterations were also observed in Apoe-/-LmnaLCS/LCSSM22αCre mice expressing progerin specifically in VSMCs, but not in Apoe-/-LmnaLCS/LCSLysMCre mice with macrophage-specific progerin expression. Moreover, Apoe-/-LmnaLCS/LCSSM22αCre mice had a shortened lifespan despite the lack of any overt aging phenotype. Aortas of ubiquitously and VSMC-specific progerin-expressing mice exhibited increased retention of fluorescently labeled human low-density lipoprotein, and atheromata in both models showed vulnerable plaque features. Immunohistopathological examination indicated that Apoe-/-LmnaLCS/LCSSM22αCre mice, unlike Apoe-/-LmnaG609G/G609G mice, die of atherosclerosis-related causes. CONCLUSIONS: We have generated the first mouse model of progerin-induced atherosclerosis acceleration, and demonstrate that restricting progerin expression to VSMCs is sufficient to accelerate atherosclerosis, trigger plaque vulnerability, and reduce lifespan. Our results identify progerin-induced VSMC death as a major factor triggering atherosclerosis and premature death in HGPS.


Assuntos
Aorta/patologia , Arteriosclerose/metabolismo , Lamina Tipo A/genética , Músculo Liso Vascular/metabolismo , Progéria/metabolismo , Animais , Arteriosclerose/genética , Senescência Celular , Modelos Animais de Doenças , Humanos , Lamina Tipo A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Progéria/genética
16.
Annu Rev Physiol ; 80: 27-48, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28934587

RESUMO

Aging, the main risk factor for cardiovascular disease (CVD), is becoming progressively more prevalent in our societies. A better understanding of how aging promotes CVD is therefore urgently needed to develop new strategies to reduce disease burden. Atherosclerosis and heart failure contribute significantly to age-associated CVD-related morbimortality. CVD and aging are both accelerated in patients suffering from Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder caused by the prelamin A mutant progerin. Progerin causes extensive atherosclerosis and cardiac electrophysiological alterations that invariably lead to premature aging and death. This review summarizes the main structural and functional alterations to the cardiovascular system during physiological and premature aging and discusses the mechanisms underlying exaggerated CVD and aging induced by prelamin A and progerin. Because both proteins are expressed in normally aging non-HGPS individuals, and most hallmarks of normal aging occur in progeria, research on HGPS can identify mechanisms underlying physiological aging.


Assuntos
Envelhecimento/metabolismo , Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Progéria/metabolismo , Calcificação Vascular/metabolismo , Animais , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Humanos , Progéria/fisiopatologia , Calcificação Vascular/fisiopatologia
17.
PLoS One ; 12(3): e0174998, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28362852

RESUMO

PURPOSE: Phosphorus is an essential nutrient involved in many pathobiological processes. Less than 1% of phosphorus is found in extracellular fluids as inorganic phosphate ion (Pi) in solution. High serum Pi level promotes ectopic calcification in many tissues, including blood vessels. Here, we studied the effect of elevated Pi concentration on macrophage polarization and calcification. Macrophages, present in virtually all tissues, play key roles in health and disease and display remarkable plasticity, being able to change their physiology in response to environmental cues. METHODS AND RESULTS: High-throughput transcriptomic analysis and functional studies demonstrated that Pi induces unpolarized macrophages to adopt a phenotype closely resembling that of alternatively-activated M2 macrophages, as revealed by arginine hydrolysis and energetic and antioxidant profiles. Pi-induced macrophages showed an anti-calcifying action mediated by increased availability of extracellular ATP and pyrophosphate. CONCLUSION: We conclude that the ability of Pi-activated macrophages to prevent calcium-phosphate deposition is a compensatory mechanism protecting tissues from hyperphosphatemia-induced pathologic calcification.


Assuntos
Trifosfato de Adenosina/metabolismo , Difosfatos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fosfatos/farmacologia , Calcificação Vascular/metabolismo , Animais , Antioxidantes/metabolismo , Cálcio/metabolismo , Citometria de Fluxo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Am J Physiol Cell Physiol ; 310(10): C788-99, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26936458

RESUMO

Calcium-phosphate deposition (CPD) in atherosclerotic lesions, which begins in middle age and increases with aging, is a major independent predictor of future cardiovascular disease morbi-mortality. Remodeling of atherosclerotic vessels during aging is regulated in part by intimal macrophages, which can polarize to phenotypically distinct populations with distinct functions. This study tested the hypothesis that classically activated macrophages (M1φs) and alternatively activated macrophages (M2φs) differently affect vascular smooth muscle cell (VSMC) calcification and investigated the underlying mechanisms. We analyzed mouse VSMC-macrophage cocultures using a transwell system. Coculture of VSMCs with M2φs significantly reduced CPD, but coculture with M1φs had no effect. The anticalcific effect of M2φs was associated with elevated amounts of extracellular ATP and pyrophosphate (PPi), two potent inhibitors of CPD, and was lost upon forced hydrolysis of these metabolites. In M2φs and VSMC-M2φs cocultures, analysis of the ectoenzymes that regulate extracellular ATP/PPi metabolism revealed increased mRNA expression and activity of ectoenzyme nucleotide pyrophosphatase/phosphodiesterase-1, which synthesizes PPi from ATP, without changes in tissue-nonspecific alkaline phosphatase, which hydrolyzes PPi In conclusion, increased accumulation of extracellular ATP and PPi by alternatively activated mouse M2φs inhibits CPD. These results reveal novel mechanisms underlying macrophage-dependent control of intimal calcification.


Assuntos
Trifosfato de Adenosina/metabolismo , Difosfatos/metabolismo , Líquido Extracelular/metabolismo , Ativação de Macrófagos , Músculo Liso Vascular/metabolismo , Calcificação Vascular/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo
19.
Methods Mol Biol ; 1339: 119-29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445785

RESUMO

Elevated serum phosphorus is a major risk factor for vascular calcification, which is characterized by the presence of calcium phosphate deposits, mainly hydroxyapatite crystals. In vitro studies of phosphate-induced calcification show that vascular smooth muscle cells undergo calcification with features similar to those observed in pathological vascular calcification in vivo, including the presence of hydroxyapatite crystals. Here, we describe the double-collagenase digestion method for isolating vascular smooth muscle cells from aorta, and a method for inducing calcification in vitro using high phosphate concentration.


Assuntos
Doenças da Aorta/patologia , Separação Celular/métodos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Cultura Primária de Células , Calcificação Vascular/patologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/induzido quimicamente , Doenças da Aorta/metabolismo , Fosfatos de Cálcio/toxicidade , Células Cultivadas , Colagenases/metabolismo , Cristalização , Durapatita/metabolismo , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/metabolismo
20.
Methods Mol Biol ; 1339: 235-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445793

RESUMO

The key roles of macrophages in atherosclerosis include the phagocytosis of apoptotic and necrotic cells and cell debris, whose accumulation in atherosclerotic lesions exacerbates inflammation and promotes plaque vulnerability. Evidence is accumulating that macrophage phagocytic functions peak at the early stages of atherosclerosis and that the reduced phagocytosis at the late stages of disease leads to the generation of necrotic cores and a defective resolution of inflammation, which in turn promotes plaque rupture, thrombus formation, and life-threatening acute ischemic events (myocardial infarction and stroke). The impaired resolution of inflammation in advanced lesions featuring loss of macrophage phagocytic activity may be in part due to an imbalance between M1 and M2 subsets of polarized macrophages. A better understanding of the mechanisms that regulate macrophage phagocytic activity in the context of atherosclerosis may therefore help identify novel therapeutic targets. This chapter presents a protocol for establishing primary mouse macrophage cultures, a method for polarizing macrophages to the M1 and M2 states, and a method for the in vitro study of macrophage phagocytosis of IgG-opsonized or IgM/complement component 3-opsonized erythrocytes.


Assuntos
Aterosclerose/imunologia , Macrófagos/imunologia , Fagocitose , Cultura Primária de Células , Animais , Aterosclerose/metabolismo , Separação Celular/métodos , Células Cultivadas , Eritrócitos/imunologia , Eritrócitos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Fenótipo , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...